
tsdate
Release 0.1.6.dev0+g7c4afeb.d20220609

Jun 09, 2022

Contents:

1 Introduction 3

2 Installation 5

3 Tutorial 7
3.1 Dating Tree Sequences . 7
3.2 Inferring and Dating Tree Sequences with Historical (Ancient) Samples 9

4 Python API 11
4.1 Running tsdate . 11
4.2 Preprocessing Tree Sequences . 13
4.3 Functions for Inferring Tree Sequences with Historical Samples . 13

5 Command line interface 15
5.1 Argument details . 15

6 Indices and tables 19

Index 21

i

ii

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

This is the documentation for tsdate, a method for efficiently inferring the age of ancestors in a tree sequence.

Contents: 1

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

2 Contents:

CHAPTER 1

Introduction

tsdate is a scalable method for estimating the age of ancestral nodes in a tree sequence. The method uses a coales-
cent prior and updates node times on the basis of the number of mutations along each edge of the tree sequence (i.e.
using the “molecular clock”).

The method is designed to operate on the output of tsinfer, which efficiently infers tree sequence topologies from large
genetic datasets. tsdate and tsinfer are scalable to the largest genomic datasets currently available.

The algorithm is described in this Science paper (preprint here). We also provide evaluations of the accuracy and
computational requirements of the method using both simulated and real data; the code to reproduce these results can
be found in another repository.

Please cite this paper if you use tsdate in published work:

> Anthony Wilder Wohns, Yan Wong, Ben Jeffery, Ali Akbari, Swapan Mallick, Ron Pinhasi, Nick Patterson, David
Reich, Jerome Kelleher, and Gil McVean (2022) A unified genealogy of modern and ancient genomes. Science 375:
eabi8264; doi: https://doi.org/10.1126/science.abi826421

3

https://tskit.dev/tutorials/what_is.html
https://tsinfer.readthedocs.io/en/latest/
https://www.science.org/doi/10.1126/science.abi8264
https://www.biorxiv.org/content/10.1101/2021.02.16.431497v2
https://github.com/awohns/unified_genealogy_paper
https://doi.org/10.1126/science.abi826421

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

4 Chapter 1. Introduction

CHAPTER 2

Installation

To install tsdate simply run:

$ python3 -m pip install tsdate --user

Python 3.5, or a more recent version, is required. The software has been tested on MacOSX and Linux.

Once installed, tsdate’s Command Line Interface (CLI) can be accessed via:

$ python3 -m tsdate

or

$ tsdate

Alternatively, the Python API allows more fine-grained control of the inference process.

5

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

6 Chapter 2. Installation

CHAPTER 3

Tutorial

3.1 Dating Tree Sequences

To illustrate the typical use case of tsdate’s Python API, we will first create sample data with msprime and infer a
tree sequence from this data using tsinfer. We will then run tsdate on the inferred tree sequence.

Let’s start by creating some sample data with msprime using human-like parameters.

import msprime

sample_ts = msprime.simulate(sample_size=10, Ne=10000,
length=1e4,
mutation_rate=1e-8,
recombination_rate=1e-8,
random_seed=2)

print(sample_ts.num_trees,
sample_ts.num_nodes)

The output of this code is:

12 29

We take this simulated tree sequence and turn it into a tsinfer SampleData object as documented here, and then infer a
tree sequence from the data

import tsinfer

sample_data = tsinfer.SampleData.from_tree_sequence(sample_ts)
inferred_ts = tsinfer.infer(sample_data)

Note: tsdate works best with simplified tree sequences (tsinfer’s documentation provides) details on how to
simplify an inferred tree sequence. This should not be an issue when working with tree sequences simulated using
msprime.

7

https://github.com/tskit-dev/msprime
https://tsinfer.readthedocs.io/en/latest/
https://tsinfer.readthedocs.io/en/latest/api.html#tsinfer.SampleData.from_tree_sequence
https://tskit.readthedocs.io/en/latest/python-api.html#tskit.TreeSequence.simplify

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

Next, we run tsdate to estimate the ages of nodes and mutations in the inferred tree sequence:

import tsdate
dated_ts = tsdate.date(inferred_ts, Ne=10000, mutation_rate=1e-8)

All we need to run tsdate (with its default parameters) is the inferred tree sequence object, the estimated effec-
tive population size, and estimated mutation rate. Here we have provided a human mutation rate per base pair per
generation, so the nodes dates in the resulting tree sequence should be interpreted as generations.

3.1.1 Specifying a Prior

The above example shows the basic use of tsdate, using default parameters. The software has parameters the user
can access through the tsdate.build_prior_grid() function which may affect the runtime and accuracy of
the algorithm.

3.1.2 Inside Outside vs Maximization

One of the most important parameters to consider is whether tsdate should use the inside-outside or the maxi-
mization algorithms to perform inference. A detailed description of the algorithms will be presented in our preprint,
but from the users perspective, the inside-outside approach performs better empirically but has issues with numerical
stability, while the maximization approach is slightly less accurate empirically, but is numerically stable.

3.1.3 Command Line Interface Example

tsdate also offers a convenient command line interface (CLI) for accessing the core functionality of the algorithm.

For a simple example of CLI, we’ll first save the inferred tree sequence we created in the section above as a file.

import tskit

inferred_ts.dump("inferred_ts.trees")

Now we use the CLI to again date the inferred tree sequence and output the resulting dated tree sequence to
dated_ts.trees file:

$ tsdate date inferred_ts.trees dated_ts.trees 10000 1e-8 --progress

The first two arguments are the input and output tree sequence file names, the third is the estimated effective population
size, and the fourth is the estimated mutation rate. We also add the --progress option to keep track of tsdate’s
progress.

3.1.4 Troubleshooting tsdate

If numerical stability issues are encountered when attempting to date tree sequences using the Inside-Outside algo-
rithm, it may be necessary to remove large sections of the tree which do not have any variable sites using tsdate.
preprocess_ts() method.

8 Chapter 3. Tutorial

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

3.2 Inferring and Dating Tree Sequences with Historical (Ancient)
Samples

tsdate and tsinfer can be used together to infer tree sequences from both modern and historical samples. The fol-
lowing recipe shows how this is accomplished with a few lines of Python. The only requirement is a tsinfer.SampleData
file with modern and historical samples (the latter are specified using the individuals_time array in a tsinfer.SampleData
file).

import msprime
import tsdate
import tsinfer
import tskit

import numpy as np

def make_historical_samples():
samples = [

msprime.Sample(population=0, time=0),
msprime.Sample(0, 0),
msprime.Sample(0, 0),
msprime.Sample(0, 0),
msprime.Sample(0, 1.0),
msprime.Sample(0, 1.0)

]
sim = msprime.simulate(samples=samples, mutation_rate=1, length=100)
Get the SampleData file from the simulated tree sequence
Retain the individuals times and ignore the sites times.
samples = tsinfer.SampleData.from_tree_sequence(

sim, use_sites_time=False, use_individuals_time=True)
return samples

def infer_historical_ts(samples, Ne=1, mutation_rate=1):
"""
Input is tsinfer.SampleData file with modern and historical samples.
"""
modern_samples = samples.subset(np.where(samples.individuals_time[:] == 0)[0])
inferred_ts = tsinfer.infer(modern_samples) # Infer tree seq from modern samples
Removes unary nodes (currently required in tsdate), keeps historical-only sites
inferred_ts = tsdate.preprocess_ts(inferred_ts, filter_sites=False)
dated_ts = tsdate.date(inferred_ts, Ne=Ne, mutation_rate=mutation_rate) # Date

→˓tree seq
sites_time = tsdate.sites_time_from_ts(dated_ts) # Get tsdate site age estimates
dated_samples = tsdate.add_sampledata_times(

samples, sites_time) # Get SampleData file with time estimates assigned to sites
ancestors = tsinfer.generate_ancestors(dated_samples)
ancestors_w_proxy = ancestors.insert_proxy_samples(

dated_samples, allow_mutation=True)
ancestors_ts = tsinfer.match_ancestors(dated_samples, ancestors_w_proxy)
return tsinfer.match_samples(

dated_samples, ancestors_ts, force_sample_times=True)

samples = make_historical_samples()
inferred_ts = infer_historical_ts(samples)

We simulate a tree sequence with six sample chromosomes, four modern and two historical. We then infer and date a
tree sequence using only the modern samples. Next, we find derived alleles which are carried by the historical samples

3.2. Inferring and Dating Tree Sequences with Historical (Ancient) Samples 9

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

and use the age of the historical samples to constrain the ages of these alleles. Finally, we reinfer the tree sequence,
using the date estimates from tsdate and the historical constraints rather than the frequency of the alleles to order
mutations in tsinfer. Historical samples are added to the ancestors tree sequence as proxy nodes, in addition to
being used as samples.

10 Chapter 3. Tutorial

https://tsinfer.readthedocs.io/en/latest/api.html?highlight=proxy#tsinfer.AncestorData.insert_proxy_samples
https://tsinfer.readthedocs.io/en/latest/api.html?highlight=proxy#tsinfer.AncestorData.insert_proxy_samples

CHAPTER 4

Python API

This page provides documentation for the tsdate Python API.

4.1 Running tsdate

tsdate.date(tree_sequence, mutation_rate, Ne=None, recombination_rate=None, time_units=None, pri-
ors=None, *, return_posteriors=None, progress=False, **kwargs)

Take a tree sequence (which could have uncalibrated node times) and assign new times to non-sample
nodes using the tsdate algorithm. If a mutation_rate is given, the mutation clock is used. The recombination
clock is unsupported at this time. If neither a mutation_rate nor a recombination_rate is given, a topology-only
clock is used. Times associated with mutations and non-sample nodes in the input tree sequence are not used in
inference and will be removed.

Parameters

• tree_sequence (TreeSequence) – The input tskit.TreeSequence, treated as
one whose non-sample nodes are undated.

• Ne (float) – The estimated (diploid) effective population size used to construct the (de-
fault) conditional coalescent prior. This is what is used when priors is None: a positive
Ne value is therefore required in this case. Conversely, if priors is not None, no Ne value
should be given.

• mutation_rate (float) – The estimated mutation rate per unit of genome per unit
time. If provided, the dating algorithm will use a mutation rate clock to help estimate node
dates. Default: None

• recombination_rate (float) – The estimated recombination rate per unit of genome
per unit time. If provided, the dating algorithm will use a recombination rate clock to help
estimate node dates. Default: None

• time_units (str) – The time units used by the mutation_rate and
recombination_rate values, and stored in the time_units attribute of the output
tree sequence. If the conditional coalescent prior is used, then this is also applies to the
value of Ne, which in standard coalescent theory is measured in generations. Therefore if

11

https://tskit.dev/tskit/docs/stable/python-api.html#tskit.TIME_UNITS_UNCALIBRATED
https://tskit.dev/tskit/docs/stable/python-api.html#tskit.TreeSequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

you wish to use mutation and recombination rates measured in (say) years, and are using the
conditional coalescent prior, the Ne value which you provide must be scaled by multiplying
by the number of years per generation. If None (default), assume "generations".

• priors (NodeGridValues) – NodeGridValue object containing the prior probabilities
for each node at a set of discrete time points. If None (default), use the conditional coales-
cent prior with a standard set of time points as given by build_prior_grid().

• return_posteriors (bool) – If True, instead of returning just a dated tree sequence,
return a tuple of (dated_ts, posteriors). Note that the dictionary returned in
posteriors (described below) is suitable for reading as a pandas DataFrame object,
using pd.DataFrame(posteriors).

• eps (float) – Specify minimum distance separating time points. Also specifies the error
factor in time difference calculations. Default: 1e-6

• num_threads (int) – The number of threads to use. A simpler unthreaded algorithm is
used unless this is >= 1. Default: None

• method (string) – What estimation method to use: can be “inside_outside” (empir-
ically better, theoretically problematic) or “maximization” (worse empirically, especially
with gamma approximated priors, but theoretically robust). If None (default) use “in-
side_outside”

• probability_space (string) – Should the internal algorithm save probabilities in
“logarithmic” (slower, less liable to to overflow) or “linear” space (fast, may overflow).
Default: “logarithmic”

• ignore_oldest_root (bool) – Should the oldest root in the tree sequence be ignored
in the outside algorithm (if “inside_outside” is used as the method). Ignoring outside root
provides greater stability when dating tree sequences inferred from real data. Default: False

• progress (bool) – Whether to display a progress bar. Default: False

Returns A copy of the input tree sequence but with altered node times, or (if
return_posteriors is True) a tuple of that tree sequence plus a dictionary of poste-
rior probabilities from the “inside_outside” estimation method. Each node whose time was
inferred corresponds to an item in this dictionary, with the key being the node ID and the value a
1D array of probabilities of the node being in a given time slice (or None if the “inside_outside”
method was not used). The start and end times of each time slice are given as 1D arrays in the
dictionary, under keys named "start_time" and end_time".

Return type tskit.TreeSequence or (tskit.TreeSequence, dict)

4.1.1 Specifying Prior and Time Discretisation Options

tsdate.build_prior_grid(tree_sequence, Ne, timepoints=20, *, approximate_priors=False, ap-
prox_prior_size=None, prior_distribution=’lognorm’, eps=1e-06,
progress=False)

Using the conditional coalescent, calculate the prior distribution for the age of each node, given the number of
contemporaneous samples below it, and the discretised time slices at which to evaluate node age.

Parameters

• tree_sequence (TreeSequence) – The input tskit.TreeSequence, treated as
undated.

• Ne (float) – The estimated (diploid) effective population size: must be specified. Using
standard (unscaled) values for Ne results in a prior where times are measures in generations.

12 Chapter 4. Python API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://tskit.dev/tskit/docs/stable/python-api.html#tskit.TreeSequence
https://tskit.dev/tskit/docs/stable/python-api.html#tskit.TreeSequence
https://docs.python.org/3/library/stdtypes.html#dict
https://tskit.dev/tskit/docs/stable/python-api.html#tskit.TreeSequence
https://docs.python.org/3/library/functions.html#float

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

• timepoints (int_or_array_like) – The number of quantiles used to create the
time slices, or manually-specified time slices as a numpy array. Default: 20

• approximate_priors (bool) – Whether to use a precalculated approximate prior or
exactly calculate prior. If approximate prior has not been precalculated, tsdate will do so
and cache the result. Default: False

• approx_prior_size (int) – Number of samples from which to precalculate prior.
Should only enter value if approximate_priors=True. If approximate_priors=True and no
value specified, defaults to 1000. Default: None

• prior_distr (string) – What distribution to use to approximate the conditional co-
alescent prior. Can be “lognorm” for the lognormal distribution (generally a better fit, but
slightly slower to calculate) or “gamma” for the gamma distribution (slightly faster, but a
poorer fit for recent nodes). Default: “lognorm”

• eps (float) – Specify minimum distance separating points in the time grid. Also specifies
the error factor in time difference calculations. Default: 1e-6

Returns A prior object to pass to tsdate.date() containing prior values for inference and a discretised
time grid

Return type base.NodeGridValues Object

4.2 Preprocessing Tree Sequences

tsdate.preprocess_ts(tree_sequence, *, minimum_gap=1000000, remove_telomeres=True,
**kwargs)

Function to prepare tree sequences for dating by removing gaps without sites and simplifying the tree sequence.
Large regions without data can cause overflow/underflow errors in the inside-outside algorithm and poor perfor-
mance more generally. Removed regions are recorded in the provenance of the resulting tree sequence.

Parameters

• tree_sequence (TreeSequence) – The input :class‘tskit.TreeSequence‘ to be pre-
processed.

• minimum_gap (float) – The minimum gap between sites to remove from the tree se-
quence. Default: “1000000”

• remove_telomeres (bool) – Should all material before the first site and after the last
site be removed, regardless of the length. Default: “True”

• **kwargs – All further keyword arguments are passed to the tskit.simplify com-
mand.

Returns A tree sequence with gaps removed.

Return type tskit.TreeSequence

4.3 Functions for Inferring Tree Sequences with Historical Samples

tsdate.sites_time_from_ts(tree_sequence, *, unconstrained=True, node_selection=’child’,
min_time=1)

Returns an estimated “time” for each site. This is the estimated age of the oldest MRCA which possesses a
derived variant at that site, and is useful for performing (re)inference of a tree sequence. It is calculated from
the ages of nodes, with the appropriate nodes identified by the position of mutations in the trees.

4.2. Preprocessing Tree Sequences 13

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://tskit.dev/tskit/docs/stable/python-api.html#tskit.TreeSequence

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

If node times in the tree sequence have been estimated by tsdate using the inside-outside algorithm, then
as well as a time in the tree sequence, nodes will store additional time estimates that have not been explictly
constrained by the tree topology. By default, this function tries to use these “unconstrained” times, although this
is likely to fail (with a warning) on tree sequences that have not been processed by tsdate: in this case the
standard node times can be used by setting unconstrained=False.

The concept of a site time is meaningless for non-variable sites, and so the returned time for these sites is np.
nan (note that this is not exactly the same as tskit.UNKNOWN_TIME, which marks sites that could have a
meaningful time but whose time estimate is unknown).

Parameters

• tree_sequence (TreeSequence) – The input :class‘tskit.TreeSequence‘.

• unconstrained (bool) – Use estimated node times which have not been constrained
by tree topology. If True (default), this requires a tree sequence which has been dated
using the tsdate inside-outside algorithm. If this is not the case, specify False to use
the standard tree sequence node times.

• node_selection (str) – Defines how site times are calculated from the age of the
upper and lower nodes that bound each mutation at the site. Options are “child”, “parent”,
“arithmetic” or “geometric”, with the following meanings

– 'child' (default): the site time is the age of the oldest node below each mutation at the
site

– 'parent': the site time is the age of the oldest node above each mutation at the site

– 'arithmetic': the arithmetic mean of the ages of the node above and the node below
each mutation is calculated; the site time is the oldest of these means.

– 'geometric': the geometric mean of the ages of the node above and the node below
each mutation is calculated; the site time is the oldest of these means

• min_time (float) – A site time of zero implies that no MRCA in the past possessed
the derived variant, so the variant cannot be used for inferring relationships between the
samples. To allow all variants to be potentially available for inference, if a site time would
otherwise be calculated as zero (for example, where the mutation_age parameter is
“child” or “geometric” and all mutations at a site are associated with leaf nodes), a minimum
site greater than 0 is recommended. By default this is set to 1, which is generally reasonable
for times measured in generations or years, although it is also fine to set this to a small
epsilon value.

Returns Array of length tree_sequence.num_sites with estimated time of each site

Return type numpy.array

tsdate.add_sampledata_times(samples, sites_time)
Return a tsinfer.SampleData file with estimated times associated with sites. Ensures that each site’s time is at
least as old as the oldest historic sample carrying a derived allele at that site.

Parameters samples (tsinfer.formats.SampleData) – A tsinfer SampleData object to
add site times to. Any historic individuals in this SampleData file are used to constrain site
times.

Returns A tsinfer.SampleData file

Return type tsinfer.SampleData

14 Chapter 4. Python API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

CHAPTER 5

Command line interface

tsdate provides a Command Line Interface to access the basic functionality of the Python API.

$ tsdate

or

$ python3 -m tsdate

The second command is useful when multiple versions of Python are installed or if the tsdate executable is not
installed on your path.

5.1 Argument details

This is the command line interface for tsdate, a tool to date tree sequences.

usage: tsdate [-h] [-V] {date,preprocess} ...

5.1.1 Positional Arguments

subcommand Possible choices: date, preprocess

5.1.2 Named Arguments

-V, --version show program’s version number and exit

15

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

5.1.3 Sub-commands:

date

Takes an inferred tree sequence topology and returns a dated tree sequence.

tsdate date [-h] [-m MUTATION_RATE] [-r RECOMBINATION_RATE] [-e EPSILON]
[-t NUM_THREADS] [--probability-space PROBABILITY_SPACE]
[--method METHOD] [--ignore-oldest] [-p] [-v VERBOSITY]
tree_sequence output Ne

Positional Arguments

tree_sequence The path and name of the input tree sequence from which we estimate node ages.

output The path and name of output file where the dated tree sequence will saved.

Ne estimated effective (diploid) population size.

Named Arguments

-m, --mutation-rate The estimated mutation rate per unit of genome per generation. If provided, the
dating algorithm will use a mutation rate clock to help estimate node dates. De-
fault: None

-r, --recombination-rate The estimated recombination rate per unit of genome per generation. If pro-
vided, the dating algorithm will use a recombination rate clock to help estimate
node dates. Default: None

-e, --epsilon Specify minimum distance separating time points. Also specifies the error factor
in time difference calculations. Default: 1e-6

-t, --num-threads The number of threads to use. A simpler unthreaded algorithm is used unless this
is >= 1. Default: None

--probability-space Should the internal algorithm save probabilities in ‘logarithmic’ (slower, less li-
able to to overflow) or ‘linear’ space (faster, may overflow). Default: ‘logarith-
mic’

--method Specify which estimation method to use: can be ‘inside_outside’ (empirically
better, theoretically problematic) or ‘maximization’ (worse empirically, espe-
cially with a gamma approximated prior, but theoretically robust). Default: ‘in-
side_outside’

--ignore-oldest Ignore the oldest node in the tree sequence, which is often of low quality when
using empirical data.

-p, --progress Show progress bar.

-v, --verbosity How much verbosity to output.

preprocess

Remove regions without data from an input tree sequence.

16 Chapter 5. Command line interface

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

tsdate preprocess [-h] [--minimum_gap MINIMUM_GAP]
[--trim-telomeres TRIM_TELOMERES] [-v VERBOSITY]
tree_sequence output

Positional Arguments

tree_sequence The tree sequence to preprocess.

output The path and name of output file where the preprocessed tree sequence will saved.

Named Arguments

--minimum_gap The minimum gap between sites to trim from the tree sequence. Default:
‘1000000’

--trim-telomeres Should all material before the first site and after the last site be trimmed, regard-
less of the length of these regions. Default: ‘True’

-v, --verbosity How much verbosity to output.

5.1. Argument details 17

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

18 Chapter 5. Command line interface

CHAPTER 6

Indices and tables

• genindex

• search

19

tsdate, Release 0.1.6.dev0+g7c4afeb.d20220609

20 Chapter 6. Indices and tables

Index

A
add_sampledata_times() (in module tsdate), 14

B
build_prior_grid() (in module tsdate), 12

D
date() (in module tsdate), 11

P
preprocess_ts() (in module tsdate), 13

S
sites_time_from_ts() (in module tsdate), 13

21

	Introduction
	Installation
	Tutorial
	Dating Tree Sequences
	Inferring and Dating Tree Sequences with Historical (Ancient) Samples

	Python API
	Running tsdate
	Preprocessing Tree Sequences
	Functions for Inferring Tree Sequences with Historical Samples

	Command line interface
	Argument details

	Indices and tables
	Index

