
tsdate
Release 0.1.dev158+gc96e07d.d20230826

Aug 26, 2023

Contents:

1 Introduction 3

2 Installation 5

3 Tutorial 7
3.1 Dating Tree Sequences . 7
3.2 Inferring and Dating Tree Sequences with Historical (Ancient) Samples 9

4 Python API 11
4.1 Running tsdate . 11
4.2 Preprocessing Tree Sequences . 11
4.3 Functions for Inferring Tree Sequences with Historical Samples . 11

5 Command line interface 13
5.1 Argument details . 13

6 Indices and tables 15

i

ii

tsdate, Release 0.1.dev158+gc96e07d.d20230826

This is the documentation for tsdate, a method for efficiently inferring the age of ancestors in a tree sequence.

Contents: 1

tsdate, Release 0.1.dev158+gc96e07d.d20230826

2 Contents:

CHAPTER 1

Introduction

tsdate is a scalable method for estimating the age of ancestral nodes in a tree sequence. The method uses a coales-
cent prior and updates node times on the basis of the number of mutations along each edge of the tree sequence (i.e.
using the “molecular clock”).

The method is designed to operate on the output of tsinfer, which efficiently infers tree sequence topologies from large
genetic datasets. tsdate and tsinfer are scalable to the largest genomic datasets currently available.

The algorithm is described in this Science paper (preprint here). We also provide evaluations of the accuracy and
computational requirements of the method using both simulated and real data; the code to reproduce these results can
be found in another repository.

Please cite this paper if you use tsdate in published work:

> Anthony Wilder Wohns, Yan Wong, Ben Jeffery, Ali Akbari, Swapan Mallick, Ron Pinhasi, Nick Patterson, David
Reich, Jerome Kelleher, and Gil McVean (2022) A unified genealogy of modern and ancient genomes. Science 375:
eabi8264; doi: https://doi.org/10.1126/science.abi8264

3

https://tskit.dev/tutorials/what_is.html
https://tsinfer.readthedocs.io/en/latest/
https://www.science.org/doi/10.1126/science.abi8264
https://www.biorxiv.org/content/10.1101/2021.02.16.431497v2
https://github.com/awohns/unified_genealogy_paper
https://doi.org/10.1126/science.abi8264

tsdate, Release 0.1.dev158+gc96e07d.d20230826

4 Chapter 1. Introduction

CHAPTER 2

Installation

To install tsdate simply run:

$ python3 -m pip install tsdate --user

Python 3.5, or a more recent version, is required. The software has been tested on MacOSX and Linux.

Once installed, tsdate’s Command Line Interface (CLI) can be accessed via:

$ python3 -m tsdate

or

$ tsdate

Alternatively, the Python API allows more fine-grained control of the inference process.

5

tsdate, Release 0.1.dev158+gc96e07d.d20230826

6 Chapter 2. Installation

CHAPTER 3

Tutorial

3.1 Dating Tree Sequences

To illustrate the typical use case of tsdate’s Python API, we will first create sample data with msprime and infer a
tree sequence from this data using tsinfer. We will then run tsdate on the inferred tree sequence.

Let’s start by creating some sample data with msprime using human-like parameters.

import msprime

sample_ts = msprime.simulate(sample_size=10, Ne=10000,
length=1e4,
mutation_rate=1e-8,
recombination_rate=1e-8,
random_seed=2)

print(sample_ts.num_trees,
sample_ts.num_nodes)

The output of this code is:

12 29

We take this simulated tree sequence and turn it into a tsinfer SampleData object as documented here, and then infer a
tree sequence from the data

import tsinfer

sample_data = tsinfer.SampleData.from_tree_sequence(sample_ts)
inferred_ts = tsinfer.infer(sample_data)

Note: tsdate works best with simplified tree sequences (tsinfer’s documentation provides) details on how to
simplify an inferred tree sequence. This should not be an issue when working with tree sequences simulated using
msprime.

7

https://github.com/tskit-dev/msprime
https://tsinfer.readthedocs.io/en/latest/
https://tsinfer.readthedocs.io/en/latest/api.html#tsinfer.SampleData.from_tree_sequence
https://tskit.readthedocs.io/en/latest/python-api.html#tskit.TreeSequence.simplify

tsdate, Release 0.1.dev158+gc96e07d.d20230826

Next, we run tsdate to estimate the ages of nodes and mutations in the inferred tree sequence:

import tsdate
dated_ts = tsdate.date(inferred_ts, Ne=10000, mutation_rate=1e-8)

All we need to run tsdate (with its default parameters) is the inferred tree sequence object, the estimated effec-
tive population size, and estimated mutation rate. Here we have provided a human mutation rate per base pair per
generation, so the nodes dates in the resulting tree sequence should be interpreted as generations.

3.1.1 Specifying a Prior

The above example shows the basic use of tsdate, using default parameters. The software has parameters the user
can access through the tsdate.build_prior_grid() function which may affect the runtime and accuracy of
the algorithm.

3.1.2 Returned dates

Several different node time estimates are returned by tsdate.date(). In particular, to conform to the requirements
of a valid tree sequence, child nodes must always be strictly younger than their parents. In the unusual case that a child
has an estimated time which is older than its parent, tsdate increases the node time of the parent in the tree sequence
so that it is constrained to be fractionally older than its oldest child.

In the case of the inside-outside method (see below), the estimated time is based on the posterior mean node time. The
true posterior mean time (unconstrained by the tree sequence requirements above) is stored in the node metadata. This
can be consulted if you want to obtain the raw mean times from the posterior.

For even greater detail about the posterior time estimates for each node, you can use the return_posteriors
option, which will return the full distribution of posterior probabilities in each time slice.

Inside Outside vs Maximization

One of the most important parameters to consider is whether tsdate should use the inside-outside or the maximiza-
tion algorithms to perform inference. A detailed description of the algorithms will be presented in our preprint, but
from the users perspective, the inside-outside approach performs better empirically, and returns a full posterior dis-
tribution, but occasionally has issues with numerical stability. In contrast, the maximization approach is slightly less
accurate empirically, and will not return true posteriors, but has the advantage of always being numerically stable.

3.1.3 Command Line Interface Example

tsdate also offers a convenient command line interface (CLI) for accessing the core functionality of the algorithm.

For a simple example of CLI, we’ll first save the inferred tree sequence we created in the section above as a file.

import tskit

inferred_ts.dump("inferred_ts.trees")

Now we use the CLI to again date the inferred tree sequence and output the resulting dated tree sequence to
dated_ts.trees file:

$ tsdate date inferred_ts.trees dated_ts.trees 10000 1e-8 --progress

8 Chapter 3. Tutorial

tsdate, Release 0.1.dev158+gc96e07d.d20230826

The first two arguments are the input and output tree sequence file names, the third is the estimated effective population
size, and the fourth is the estimated mutation rate. We also add the --progress option to keep track of tsdate’s
progress.

3.1.4 Troubleshooting tsdate

If numerical stability issues are encountered when attempting to date tree sequences using the Inside-Outside algo-
rithm, it may be necessary to remove large sections of the tree which do not have any variable sites using tsdate.
preprocess_ts() method.

3.2 Inferring and Dating Tree Sequences with Historical (Ancient)
Samples

tsdate and tsinfer can be used together to infer tree sequences from both modern and historical samples. The fol-
lowing recipe shows how this is accomplished with a few lines of Python. The only requirement is a tsinfer.SampleData
file with modern and historical samples (the latter are specified using the individuals_time array in a tsinfer.SampleData
file).

import msprime
import tsdate
import tsinfer
import tskit

import numpy as np

def make_historical_samples():
samples = [

msprime.Sample(population=0, time=0),
msprime.Sample(0, 0),
msprime.Sample(0, 0),
msprime.Sample(0, 0),
msprime.Sample(0, 1.0),
msprime.Sample(0, 1.0)

]
sim = msprime.simulate(samples=samples, mutation_rate=1, length=100)
Get the SampleData file from the simulated tree sequence
Retain the individuals times and ignore the sites times.
samples = tsinfer.SampleData.from_tree_sequence(

sim, use_sites_time=False, use_individuals_time=True)
return samples

def infer_historical_ts(samples, Ne=1, mutation_rate=1):
"""
Input is tsinfer.SampleData file with modern and historical samples.
"""
modern_samples = samples.subset(np.where(samples.individuals_time[:] == 0)[0])
inferred_ts = tsinfer.infer(modern_samples) # Infer tree seq from modern samples
Removes unary nodes (currently required in tsdate), keeps historical-only sites
inferred_ts = tsdate.preprocess_ts(inferred_ts, filter_sites=False)
dated_ts = tsdate.date(inferred_ts, Ne=Ne, mutation_rate=mutation_rate) # Date

→˓tree seq
sites_time = tsdate.sites_time_from_ts(dated_ts) # Get tsdate site age estimates

(continues on next page)

3.2. Inferring and Dating Tree Sequences with Historical (Ancient) Samples 9

tsdate, Release 0.1.dev158+gc96e07d.d20230826

(continued from previous page)

dated_samples = tsdate.add_sampledata_times(
samples, sites_time) # Get SampleData file with time estimates assigned to sites

ancestors = tsinfer.generate_ancestors(dated_samples)
ancestors_w_proxy = ancestors.insert_proxy_samples(

dated_samples, allow_mutation=True)
ancestors_ts = tsinfer.match_ancestors(dated_samples, ancestors_w_proxy)
return tsinfer.match_samples(

dated_samples, ancestors_ts, force_sample_times=True)

samples = make_historical_samples()
inferred_ts = infer_historical_ts(samples)

We simulate a tree sequence with six sample chromosomes, four modern and two historical. We then infer and date a
tree sequence using only the modern samples. Next, we find derived alleles which are carried by the historical samples
and use the age of the historical samples to constrain the ages of these alleles. Finally, we reinfer the tree sequence,
using the date estimates from tsdate and the historical constraints rather than the frequency of the alleles to order
mutations in tsinfer. Historical samples are added to the ancestors tree sequence as proxy nodes, in addition to
being used as samples.

10 Chapter 3. Tutorial

https://tsinfer.readthedocs.io/en/latest/api.html?highlight=proxy#tsinfer.AncestorData.insert_proxy_samples
https://tsinfer.readthedocs.io/en/latest/api.html?highlight=proxy#tsinfer.AncestorData.insert_proxy_samples

CHAPTER 4

Python API

This page provides documentation for the tsdate Python API.

4.1 Running tsdate

4.1.1 Specifying Prior and Time Discretisation Options

4.2 Preprocessing Tree Sequences

4.3 Functions for Inferring Tree Sequences with Historical Samples

11

tsdate, Release 0.1.dev158+gc96e07d.d20230826

12 Chapter 4. Python API

CHAPTER 5

Command line interface

tsdate provides a Command Line Interface to access the basic functionality of the Python API.

$ tsdate

or

$ python3 -m tsdate

The second command is useful when multiple versions of Python are installed or if the tsdate executable is not
installed on your path.

5.1 Argument details

13

tsdate, Release 0.1.dev158+gc96e07d.d20230826

14 Chapter 5. Command line interface

CHAPTER 6

Indices and tables

• genindex

• search

15

	Introduction
	Installation
	Tutorial
	Dating Tree Sequences
	Inferring and Dating Tree Sequences with Historical (Ancient) Samples

	Python API
	Running tsdate
	Preprocessing Tree Sequences
	Functions for Inferring Tree Sequences with Historical Samples

	Command line interface
	Argument details

	Indices and tables

