

Welcome to tsdate’s documentation

This is the documentation for tsdate, a method for efficiently inferring the
age of ancestors in a tree sequence.

Contents:

	Introduction

	Installation

	Tutorial
	Dating Tree Sequences

	Inferring and Dating Tree Sequences with Historical (Ancient) Samples

	Python API
	Running tsdate

	Preprocessing Tree Sequences

	Functions for Inferring Tree Sequences with Historical Samples

	Command line interface
	Argument details

Indices and tables

	Index

	Search Page

Introduction

tsdate is a scalable method for estimating the age of ancestral nodes in a
tree sequence [https://tskit.dev/tutorials/what_is.html]. The method uses a coalescent prior and updates node times on the basis of the number of mutations along each edge of the tree sequence (i.e. using the “molecular clock”).

The method is designed to operate on the output of tsinfer [https://tsinfer.readthedocs.io/en/latest/], which efficiently infers tree sequence topologies from large genetic datasets. tsdate and tsinfer are scalable to the largest genomic datasets currently available.

The algorithm is described in this Science paper [https://www.science.org/doi/10.1126/science.abi8264]
(preprint here [https://www.biorxiv.org/content/10.1101/2021.02.16.431497v2]). We also provide evaluations of the accuracy and computational requirements of the method using both simulated and real data; the code to reproduce these results can be found in another repository [https://github.com/awohns/unified_genealogy_paper].

Please cite this paper if you use tsdate in published work:

> Anthony Wilder Wohns, Yan Wong, Ben Jeffery, Ali Akbari, Swapan Mallick, Ron Pinhasi, Nick Patterson, David Reich, Jerome Kelleher, and Gil McVean (2022) A unified genealogy of modern and ancient genomes. Science 375: eabi8264; doi: https://doi.org/10.1126/science.abi8264

Installation

To install tsdate simply run:

$ python3 -m pip install tsdate --user

Python 3.5, or a more recent version, is required. The software has been tested
on MacOSX and Linux.

Once installed, tsdate’s Command Line Interface (CLI) can be accessed via:

$ python3 -m tsdate

or

$ tsdate

Alternatively, the Python API allows more fine-grained control
of the inference process.

Tutorial

Dating Tree Sequences

To illustrate the typical use case of tsdate’s Python API, we will first create
sample data with msprime [https://github.com/tskit-dev/msprime] and infer a tree
sequence from this data using tsinfer [https://tsinfer.readthedocs.io/en/latest/].
We will then run tsdate on the inferred tree sequence.

Let’s start by creating some sample data with msprime using human-like parameters.

import msprime

sample_ts = msprime.simulate(sample_size=10, Ne=10000,
 length=1e4,
 mutation_rate=1e-8,
 recombination_rate=1e-8,
 random_seed=2)
print(sample_ts.num_trees,
 sample_ts.num_nodes)

The output of this code is:

12 29

We take this simulated tree sequence and turn it into a tsinfer SampleData object as
documented here [https://tsinfer.readthedocs.io/en/latest/api.html#tsinfer.SampleData.from_tree_sequence], and then infer a tree sequence from
the data

import tsinfer

sample_data = tsinfer.SampleData.from_tree_sequence(sample_ts)
inferred_ts = tsinfer.infer(sample_data)

Note

tsdate works best with simplified tree sequences [https://tskit.readthedocs.io/en/latest/python-api.html#tskit.TreeSequence.simplify] (tsinfer’s documentation provides)
details on how to simplify an inferred tree sequence. This should not be an issue
when working with tree sequences simulated using msprime.

Next, we run tsdate to estimate the ages of nodes and mutations in the inferred tree
sequence:

import tsdate
dated_ts = tsdate.date(inferred_ts, Ne=10000, mutation_rate=1e-8)

All we need to run tsdate (with its default parameters) is the inferred tree sequence
object, the estimated effective population size, and estimated mutation rate. Here we
have provided a human mutation rate per base pair per generation, so the nodes dates in the
resulting tree sequence should be interpreted as generations.

Specifying a Prior

The above example shows the basic use of tsdate, using default parameters. The
software has parameters the user can access through the tsdate.build_prior_grid()
function which may affect the runtime and accuracy of the algorithm.

Returned dates

Several different node time estimates are returned by tsdate.date(). In particular,
to conform to the requirements of a valid tree sequence, child nodes must always be strictly
younger than their parents. In the unusual case that a child has an estimated time which is
older than its parent, tsdate increases the node time of the parent in the tree
sequence so that it is constrained to be fractionally older than its oldest child.

In the case of the inside-outside method (see below), the estimated time is based on the
posterior mean node time. The true posterior mean time (unconstrained by the tree sequence
requirements above) is stored in the node metadata. This can be consulted if you want to
obtain the raw mean times from the posterior.

For even greater detail about the posterior time estimates for each node, you can use the
return_posteriors option, which will return the full distribution of posterior
probabilities in each time slice.

Inside Outside vs Maximization

One of the most important parameters to consider is whether tsdate should use the
inside-outside or the maximization algorithms to perform inference. A detailed
description of the algorithms will be presented in our preprint, but from the users
perspective, the inside-outside approach performs better empirically, and returns
a full posterior distribution, but occasionally has issues with numerical stability. In
contrast, the maximization approach is slightly less accurate empirically, and will
not return true posteriors, but has the advantage of always being numerically stable.

Command Line Interface Example

tsdate also offers a convenient command line interface (CLI) for
accessing the core functionality of the algorithm.

For a simple example of CLI, we’ll first save the inferred tree sequence we created in
the section above as a file.

import tskit

inferred_ts.dump("inferred_ts.trees")

Now we use the CLI to again date the inferred tree sequence and output the resulting
dated tree sequence to dated_ts.trees file:

$ tsdate date inferred_ts.trees dated_ts.trees 10000 1e-8 --progress

The first two arguments are the input and output tree sequence file names, the third is the estimated effective population size, and the fourth is the estimated mutation rate. We also add the --progress option to keep track of tsdate’s progress.

Troubleshooting tsdate

If numerical stability issues are encountered when attempting to date
tree sequences using the Inside-Outside algorithm, it may be necessary to remove
large sections of the tree which do not have any variable sites using
tsdate.preprocess_ts() method.

Inferring and Dating Tree Sequences with Historical (Ancient) Samples

tsdate and tsinfer can be used together to infer tree sequences from both
modern and historical samples. The following recipe shows how this is accomplished
with a few lines of Python. The only requirement is a tsinfer.SampleData file with
modern and historical samples (the latter are specified using the
individuals_time array in a tsinfer.SampleData file).

import msprime
import tsdate
import tsinfer
import tskit

import numpy as np

def make_historical_samples():
 samples = [
 msprime.Sample(population=0, time=0),
 msprime.Sample(0, 0),
 msprime.Sample(0, 0),
 msprime.Sample(0, 0),
 msprime.Sample(0, 1.0),
 msprime.Sample(0, 1.0)
]
 sim = msprime.simulate(samples=samples, mutation_rate=1, length=100)
 # Get the SampleData file from the simulated tree sequence
 # Retain the individuals times and ignore the sites times.
 samples = tsinfer.SampleData.from_tree_sequence(
 sim, use_sites_time=False, use_individuals_time=True)
 return samples

def infer_historical_ts(samples, Ne=1, mutation_rate=1):
 """
 Input is tsinfer.SampleData file with modern and historical samples.
 """
 modern_samples = samples.subset(np.where(samples.individuals_time[:] == 0)[0])
 inferred_ts = tsinfer.infer(modern_samples) # Infer tree seq from modern samples
 # Removes unary nodes (currently required in tsdate), keeps historical-only sites
 inferred_ts = tsdate.preprocess_ts(inferred_ts, filter_sites=False)
 dated_ts = tsdate.date(inferred_ts, Ne=Ne, mutation_rate=mutation_rate) # Date tree seq
 sites_time = tsdate.sites_time_from_ts(dated_ts) # Get tsdate site age estimates
 dated_samples = tsdate.add_sampledata_times(
 samples, sites_time) # Get SampleData file with time estimates assigned to sites
 ancestors = tsinfer.generate_ancestors(dated_samples)
 ancestors_w_proxy = ancestors.insert_proxy_samples(
 dated_samples, allow_mutation=True)
 ancestors_ts = tsinfer.match_ancestors(dated_samples, ancestors_w_proxy)
 return tsinfer.match_samples(
 dated_samples, ancestors_ts, force_sample_times=True)

samples = make_historical_samples()
inferred_ts = infer_historical_ts(samples)

We simulate a tree sequence with six sample chromosomes, four modern and
two historical. We then infer and date a tree sequence using only the modern
samples. Next, we find derived alleles which are carried by the historical samples and
use the age of the historical samples to constrain the ages of these alleles. Finally,
we reinfer the tree sequence, using the date estimates from tsdate and the historical
constraints rather than the frequency of the alleles to order mutations in tsinfer.
Historical samples are added to the ancestors tree sequence as proxy nodes, in addition
to being used as samples [https://tsinfer.readthedocs.io/en/latest/api.html?highlight=proxy#tsinfer.AncestorData.insert_proxy_samples].

Python API

This page provides documentation for the tsdate Python API.

Running tsdate

Specifying Prior and Time Discretisation Options

Preprocessing Tree Sequences

Functions for Inferring Tree Sequences with Historical Samples

Command line interface

tsdate provides a Command Line Interface to access the basic functionality of the
Python API.

$ tsdate

or

$ python3 -m tsdate

The second command is useful when multiple versions of Python are
installed or if the tsdate executable is not installed on your path.

Argument details

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to tsdate’s documentation

 		
 Introduction

 		
 Installation

 		
 Tutorial

 		
 Dating Tree Sequences

 		
 Specifying a Prior

 		
 Returned dates

 		
 Command Line Interface Example

 		
 Troubleshooting tsdate

 		
 Inferring and Dating Tree Sequences with Historical (Ancient) Samples

 		
 Python API

 		
 Running tsdate

 		
 Specifying Prior and Time Discretisation Options

 		
 Preprocessing Tree Sequences

 		
 Functions for Inferring Tree Sequences with Historical Samples

 		
 Command line interface

 		
 Argument details

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/ajax-loader.gif

_static/comment-bright.png

